A CAUCHY - POISSON PROBLEM

L. N, Sretenskii UDC 532.5

We give a new formula, which may be useful in solving some problems concerning the non-
steady-state wave motion of a heavy liquid.

In the domain of nonsteady-state motions of a liquid in a gravitational field of force the simplest prob-
lem is the Cauchy—Poisson problem of determining the motion of an infinitely deep liquid, the motion aris-
ing from initial velocities imparted to particles of the liquid and from an initial change in the equilibrium
horizontal surface of the liquid; the entire problem is solved assuming the absence of vorticity.

For the special case in which the initial data is symmetric with respect to a vertical line, say, the
axis OZ, the solution of the Cauchy —Poisson problem may be written as in [1] in terms of the cylindrical
coordinates r and z:
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Here ¢(r, 2z, t) is the velocity potential for velocities arising from an initial pressure impulse F(r), apphed
af the initial instant to the suriace of the liguid: f(r) is the initial elevation of the surface of the liquid; ot
= gk

We carry out the analysis of Eq. (1) for two particular cases. We assume at first that the waves are
formed under the influence of only the initial elevation of the surface of the liquid, F(r) = 0. Subsequent to
this, we consider wave motions formed only from the initial pressure impulse, in this case f(r) = 0

Considering the first case, we assume that the initial elevation of the surface of the liguid is concen-
trated about the origin of coordinates, occupying a circle of very small radius ¢, whereby the vertical co-
ordinates of the surface of the liquid inside this circle are so large that the integral
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has a finite value, different from zero and equal to the volume V of the initial elevation,

Moreover, by assumption, we can write the velocity potential as
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The following formula serves to determine the form of the surface of the liquid:
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in this formula ¢ is the vertical coordinate of a variable point of the surface,

To determine ¢ on the basis of Eq. (2) involves certain complications since this requires letting z
— —0 in the formula
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and this encompasses a number of difficulties,

Thus our problem amounts to assigning a new expression to the potential ¢(r, z, t) so as to avoid the
difficulties associated with this limiting process.

We take the veloeity potential (2) and rewrite it, replacing the Bessel function by a half-sum of Hankel
functions:
Jo (kr) = 2— [HE" (kr) + HE (k).

We obtain
v
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Knowing the asymptotic forxﬁula.s
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we can replace the integration in the first integral by an integration along the positive part of the imaginary
axis, and in the second integral by an integration along the negative part of the imaginary axis. In the first
integral we put

i
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and in the second integral '
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After making these transformations we can bring Eq. (3) to the form
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We make a further transformation through the use of the formulas [2]
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here Ky(nr) is the MacDonald function.
Applying these formulas, we obtain
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Making some small transformations, we obtain
o, 2 1) =_:T§1/g_x [sin (vt l/gz—”) ch (t _g;_)
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From this we have:
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In this formula we can put z = 0 since the presence of the function Ky(ur) insures uniform convergence of
the integral, Thus the equation of the surface of the liquid at an arbitrary instant of time may be written
in the form
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A somewhat more involved formula may be obtained for the elevation ¢' of the surface of the liquid, set in
motion by a concentrated initial impulse of magnitude S applied at the coordinate origin:
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We now apply Eq. (4) to determine the equation of the surface of the liquid for large values of the
parameter T = gt* /2r. To do this we introduce into Eq. (4) a new variable of integration £ = Vrn/7:
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For large values of the parameter 7 we can replace the function Ko(T.gz) by its asymptotic expression*
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We obtain
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We transform this integral to a new form, introducing the notation
E (1) = I gze‘t[(l-i—i)ﬁ—%’] dt,
’ (6)
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From this we see that the previous formula may be written in the form
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Completing the square in the exponents of the integrand functions of Egs. (6), we obtain
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Consider now the function E{(7). In place of ¢ we introduce a new variable of integration n, putting
1 ,
§= T (++n.

The path of integration (Ly) with respect to the variable n is a horizontal line drawn from the point — (1 + i)
/2 to plus infinity, In the new variable we have
1 1.
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* The possibility of such a replacement requires explanation since the function Ko('rgz) is defined over
values of the argument varying from 0 to «; consequently, for small ¢ the use of this asymptotic formula
is not valid, However, to arrive at the simple formulas (6) it is necessary to proceed as follows: we break
up the path of integration (0, «) into two parts (0, o) and (o, =), where o is an arbitrary positive number.
At pomts of the second part we can, for large values of r, apply the asymptotic formula for the function
Ky(7£2); as for the points of the first part, we can take the number o in the form of a function of the param-
eter T, which tends to zero together with 771, so that the integral over the first part of the path becomes
mﬁmtely small by comparison with the integral of the second part as T increases without bound.
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We transform the path (L;) into a new path consisting of two lines joining the points:
[—4 —;— {1+, 0 ]and[O, o],

Carrying out the indicated operations in Eq. (8), we have:
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We note now that in going from the complete Eq. (4) to Eq. (7) we have, in replacing the function Ko(rgz) by
its asymptotic expression, taken into account only terms of order of smallness equal to 1/2 with respect
to 7. Consequently, in the two previous formulas we can throw away those terms of order of smallness
exceeding 1 /2. Doing this, we find
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1t follows from this that we can write Eq. (8) as
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Let us turn, finally, to the function E,(7). Subjecting this function to the same transformations as were
applied to E;(7), we obtain '
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Let (L) be the horizontal line drawn from the point (1—-i)/2 to plus infinity. Let us evaluate the individual
terms of the right-hand side, We have
T
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Taking into account in these formulas only the terms of order 1/2 with respect to 71, we obtain:
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It follows from this that E,(7) = 0. We return now to Eq. (7) and apply therein the asymptotic expressions
obtained for the functions E,(7) and E,(7). We obtain the following equation of the surface of the liquid for
large values of the quantity 7:

Vgt2 Cos £
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In exactly the same way we can find, starting with Eq. (5), an equation for the surface of the liquid after it
has been subjected to a concentrated pressure impulse:

. |y i

e ‘ ———sin .
8t Zort 4r

1184



LITERATURE CITED

H. Lamb, Hydrodynamiecs, Fifth Edition, Cambridge (1942), §255.
G. N, Watson, Theory of Bessel Functions, Second Edition, Cambridge (1958),

1185



